A. Caprara¹ L. Galli¹ S. Stiller² P. Toth¹

¹University of Bologna

²Technische Universität Berlin

RailZurich2009, February 11 - 13

Train Platforming Problem In and Out TPP deterministic model

Train Platforming Problem

In and Out TPP deterministic model

Recovery-Robust Train Platforming

Definitions Delay propagation network Buffers linking constraints

Train Platforming Problem

In and Out TPP deterministic model

Recovery-Robust Train Platforming

Definitions Delay propagation network Buffers linking constraints

Computational results

Train Platforming Problem

In and Out TPP deterministic model

Recovery-Robust Train Platforming

Definitions Delay propagation network Buffers linking constraints

Computational results

References

The objective of train platforming is assigning trains to platforms in a railway station.

The objective of train platforming is assigning trains to platforms in a railway station. Platforming is carried out:

The objective of train platforming is assigning trains to platforms in a railway station. Platforming is carried out:

for a specific railway station

The objective of train platforming is assigning trains to platforms in a railway station. Platforming is carried out:

- for a specific railway station
- after the timetable has been defined

Recovery-Robust Platforming by Network Buffering
Train Platforming Problem
In and Out

In and Out

Recovery-Robust Platforming by Network Buffering
Train Platforming Problem
In and Out

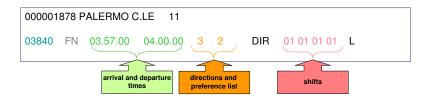
In and Out

Input

- > Train schedule : arrival, departure times, directions and allowed shifts
- Railway station topology: platforms, paths and directions

Recovery-Robust Platforming by Network Buffering
Train Platforming Problem
In and Out

In and Out


Input

- > Train schedule : arrival, departure times, directions and allowed shifts
- Railway station topology: platforms, paths and directions

Output

 Assign each train a platform and two paths for arrival and departure s.t. no operational constraint is violated

The train schedule of a railway station contains info on arrival and departure times, directions and allowed shifts of each train passing through it.

Railway station topology

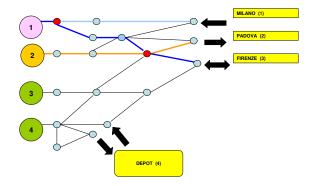
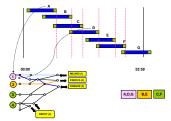
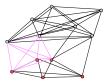



Figure: Topology

The topology of a railway station includes platforms, paths and directions.


Recovery-Robust Platforming by Network Buffering
Train Platforming Problem
TPP deterministic model

Resources and operational constraints

Platform conflicts are forbidden, path conflicts are allowed to some extent.

Figure: Platform and path.

A pattern P for a train t is a 5-tuple defining: platform, arrival/departure paths and shifts. Operational constraints can be expressed using an incompatibility graph among patterns.

Figure: Incompatibility graph.

L_TPP deterministic model

TPP deterministic model

s.t.

$$\begin{aligned}
\min \sum_{t \in T} \sum_{P \in \mathscr{P}_t} c_{t,P} x_{t,P} & (1) \\
& \sum_{P \in \mathscr{P}_t} x_{t,P} = 1, \quad t \in T & (2) \\
& \sum_{(t_1,P_1) \in K} x_{t_1,P_1} + \sum_{(t_2,P_2) \in K} x_{t_2,P_2} \le 1, \quad (t_1,t_2) \in T^2, K \in \mathscr{K}(t_1,t_2) & (3) \\
& x_{t,P} \in \{0,1\}, \quad t \in T, \ P \in \mathscr{P}_t & (4)
\end{aligned}$$

Details in Caprara et al. 2007 [2].

Robust Optimization

Robust Optimization finds best solutions, which are feasible for all likely scenarios.

Robust Optimization

Robust Optimization finds best solutions, which are feasible for all likely scenarios.

Pros

- no knowledge of the underlying distribuition is required
- models are easier to solve

Robust Optimization

Robust Optimization finds best solutions, which are feasible for all likely scenarios.

Pros

- no knowledge of the underlying distribuition is required
- models are easier to solve

Cons

Strict robustness is generally overconservative, because:

- solutions must cope with every likely scenarios without any recovery
- it is unable to account for limits to the sum of all disturbances

Recovery-Robust Platforming by Network Buffering Recovery-Robust Train Platforming Definitions

Recoverable Robustness

Informally speaking, a solution to an optimization problem is called *recovery robust* if it can be adjusted to all likely scenarios by limited recovery action. Thus a recovery-robust solution provides a service guarantee (Liebchen *et al.* 2007 [3]).

Robust Network Buffering

We are interested in the special case in which the recovery problem is a delay (y_i^a) propagation in some directed graph N, which is buffered on the arcs by means of f against disturbances on the arcs $a \in A(N)$. Denoting by A(N) the set of arcs in N, we get:

$$\min_{f \in P} c(f)$$
s.t. $\forall a \in A(N) \exists y^a \in \mathbb{R}^{|A(N)|}$:
$$f_{(i,j)} + y_i^a - y_i^a \ge \Delta \cdot \chi_a((i,j)), \qquad a = (i,j) \in A(N)$$

$$D - d' y^a \ge 0$$

Details in Liebchen et al. 2007 [3].

Recovery-Robust Train Platforming

- Delay propagation network

Delay propagation network

The platforming gives rise in a natural way to a network in which the delay caused by disturbances propagates. This *delay propagation network* is a directed acyclic graph in which each vertex represents the delay of a particular train for a particular resource.

Recovery-Robust Train Platforming

Delay propagation network

Delay propagation network

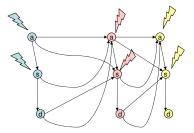


Figure: Delay propagation network

Each train has three associated vertices in this graph: (i) a for the arrival path, (ii) s for the stopping platform, and (iii) d for the departure path, corresponding to the delay (with respect to the nominal schedule) with which it will free up each of the three resources assigned to it.

Recovery-Robust Train Platforming

Delay propagation network

Example

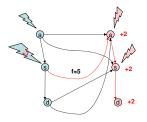


Figure: Example

Assume in the nominal schedule the first train frees up the platform at 10:00, the second train occupies it at 10:05 and frees it up at 10:10. Then a delay of more than 5 minutes for the first train results in a delay also for the second.

Recovery-Robust Train Platforming

L_Delay propagation network

Delay propagation network model

$$D \ge \sum_{t \in T} (a_t^{\xi} + s_t^{\xi} + d_t^{\xi}), \quad \xi \in \{\delta_t | t \in T\} \cup \{\delta_t' | t \in T\}$$
(5)
$$a_t^{\xi} \ge \delta_t^{\xi}, \quad t \in T$$
(6)
$$s_t^{\xi} \ge a_t^{\xi} + \delta_t'^{\xi}, \quad t \in T$$
(7)
$$d_t^{\xi} \ge s_t^{\xi}, \quad t \in T$$
(8)
$$m_{t_2}^{\xi} \ge h_{t_1}^{\xi} - f(h_{t_1}, m_{t_2}), \quad a = (h_{t_1}, m_{t_2}) \in A(N)$$
(9)

Buffers linking constraints

A straightforward link between the buffer value of a given arc $a \in A(N)$ associated with train pair $(t_1, t_2) \in T^2$ and the choice of patterns for the given pair of trains is the following:

$$\sum_{P_1 \in \mathscr{P}_{t_1}} \sum_{P_2 \in \mathscr{P}_{t_2}} c_{P_1, P_2, a} \; x_{t_1, P_1} \; x_{t_2, P_2}$$

where c_{a,P_1,P_2} is a constant associated to arc *a* and to the corresponding choice of patterns (P_1, P_2) for trains (t_1, t_2) .

- Recovery-Robust Train Platformin

Buffers linking constraints

Buffers linking constraints

$$f_{a} \leq \sum_{P_{1} \in \mathscr{P}_{t_{1}}} \alpha_{P_{1}}^{a} x_{t_{1},P_{1}} + \sum_{P_{2} \in \mathscr{P}_{t_{2}}} \beta_{P_{2}}^{a} x_{t_{2},P_{2}} - \gamma^{a}, \qquad a \in A(N), \ (\alpha,\beta,\gamma) \in \mathscr{F}_{a}$$
(10)

Following Caprara *et al.* 2007 [2], the separation of Constraints (10) is done by a sort of polyhedral brute force, given that, for each pair of trains t_1, t_2 , and for each arc $a \in A(N)$ the number of vertices in $Q_{t_1,t_2,a}$ is small. Specifically, $Q_{t_1,t_2,a}$ has $|\mathscr{P}_{t_1}||\mathscr{P}_{t_2}|$ vertices and lies in $\mathbb{R}^{|\mathscr{P}_{t_1}|+|\mathscr{P}_{t_2}|+1}$, so we can separate over it by solving an LP with $|\mathscr{P}_{t_1}||\mathscr{P}_{t_2}|$ variables and $|\mathscr{P}_{t_1}|+|\mathscr{P}_{t_2}|+1$ constraints.

Computational results: Palermo C.Le.

time	# trains	D	CPU time	D	CPU time	Diff. D	Diff. D
window	n.p.	nom	nom (sec)	RR	RR (sec)		in %
A	0	646	7	479	46	167	25.85
В	2	729	7	579	3826	150	20.58
C	0	487	6	356	143	131	26.90
D	2	591	6	384	228	207	35.03
E	1	710	9	516	2217	194	27.32
F	1	560	7	480	18	80	14.29
G	3	465	11	378	64	87	18.71

Table: Results for Paleri	mo Centrale
---------------------------	-------------

Computational results: Genova P.Princ.

time	# trains	D	CPU time	D	CPU time	Diff. D	Diff. D
window	n.p.	nom	nom (sec)	RR	RR (sec)		in %
A	0	630	9	516	18190	114	18.10
В	0	838	11	624	3177	214	25.54
C	0	888	7	509	2495	379	42.68
D	4	895	8	657	9940	238	26.59
E	1	616	5	405	37	211	34.25
F	1	516	5	373	14	143	27.71
G	0	431	5	219	8	212	49.19

Table: Results for Genova Piazza Principe

References

- Caprara A., Kroon L., Monaci M., Peeters M., Toth P.: Passenger Railway Optimization. in Barnhart C., Laporte G. (eds.): Transportation, Handbooks in Operations Research and Management Science 14 Elsevier (2007) 129-187
- Caprara A., Galli L., Toth P. Solution to the Train Platforming Problem ATMOS 2007.
- Kroon L.G., Romeijn H.E., Zwaneveld P.J.: Routing Trains Through Railway Stations: Complexity Issues. European Journal of Operations Research **98** (1997) 485-498.

Liebchen C., Lübbecke M., Möhring R. H., Stiller S. *Recoverable Robusteness* Techinical Report 0066, EU ARRIVAL project.

- Liebchen C., Stiller S. *Delay Resistant Timetabling* Techinical Report 0066, EU ARRIVAL project.
- Zwaneveld P.J., Kroon L.G., van Hoesel C.P.M.: Routing Trains through a Railway Station based on a Node Packing Model. European Journal of Operations Research 128 (2001) 14-33.