An improved approach for the sensitivity analysis of computationally expensive microscopic traffic models -- a case study of the Zurich network in VISSIM

Qiao Ge & Monica Menendez

"Traffic Engineering" Group (SVT) Institute for Transport Planning and Systems (IVT) ETH Zurich, Switzerland

> TRB 92nd Annual Meeting January 16th, 2013

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

Introduction

Introduction

Quasi-OTEE Metho

Case Study

Conclusions

2

- Sensitivity Analysis (SA) is useful to identify influential parameters in model calibration.
- Problem: lack of formal procedures and few examples of SA in the calibration of microscopic traffic models, especially computationally expensive models.
- Our aim: to develop an efficient approach as a preliminary screening tool.

Review of SA Methods

Introduction

Quasi-OTEE Meth

Case Study

Conclusions

3

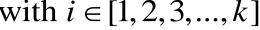
- Derivative-based approach
- Regression-based approach
- Sampling-based approach
- Variance-based approach
- Metamodel-based approach
- Monte Carlo Filtering approach
- Screening approach: Elementary Effects Method

Definition of Elementary Effect

Introduction

Quasi-OTEE Method

Case Study


Conclusions

4

A model Y has k parameters $\mathbf{X} = [X_1, X_2, ..., X_k]$, the output is: $Y(X) = Y(X_1, ..., X_{i-1}, X_i, ..., X_k)$

If X_i is changed by Δ , then the EE is:

$$EE_{i} = \frac{Y(X_{1}, \dots, X_{i-1}, X_{i} + \Delta, \dots, X_{k}) - Y(X_{1}, \dots, X_{i-1}, X_{i}, \dots, X_{k})}{\Delta}$$
with $i \in [1, 2, 3, \dots, k]$

Calculating the Sensitivity Index (SI) μ , μ^* and σ of EE by sampling different **X**:

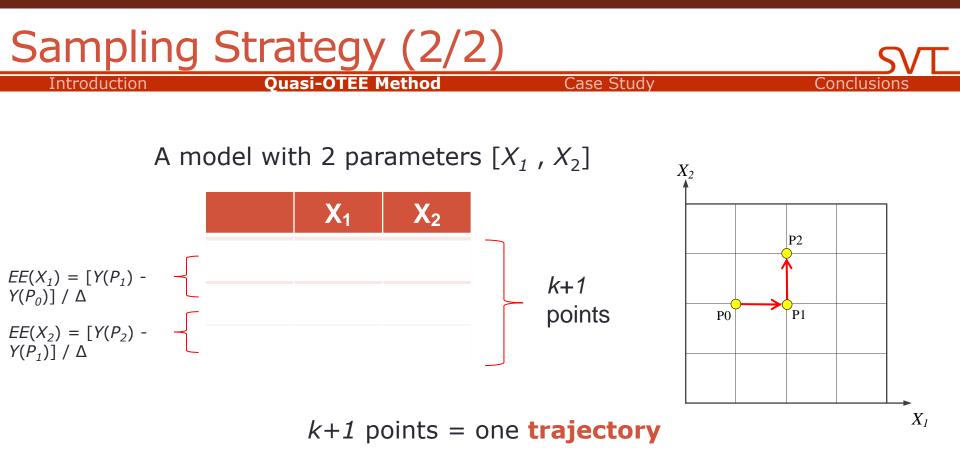
- 1) Non-influential parameters: low μ^*
- 2) Linear and additive effects, no interaction: high μ^* but low σ
- 3) Non-linear effects and/or strong interactions: high μ^* and σ
- 4) Oscillating effects: low μ but high μ^*

Case Study

5

Conclus

Sampling Strategy (1/2)

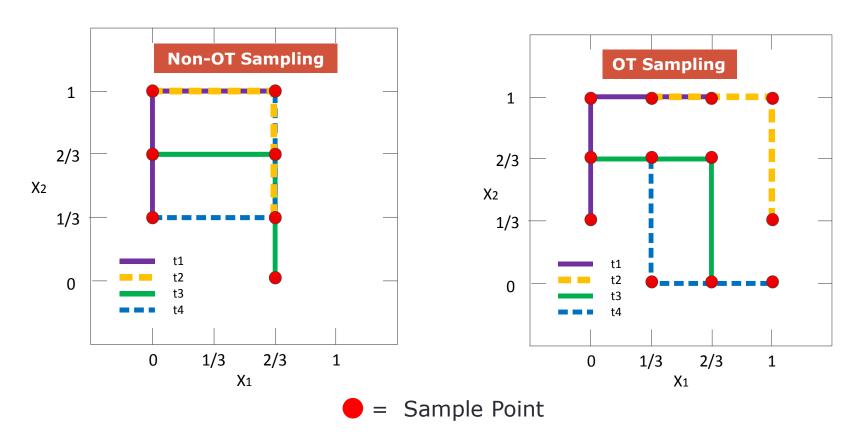

• Two model runs are required to calculate one EE for X_i : with initial inputs $[X_1, X_2, ..., X_{i-1}, X_i, X_{i+1}, ..., X_k]$ and the varied inputs $[X_1, X_2, ..., X_{i-1}, X_i + \Delta, X_{i+1}, ..., X_k]$.

• A *k*-parameter model: if *m* EEs are required for each parameter, then <u>2mk</u> model runs are required.

e.g. k= 14, m=200, 30 min/run Total computation time ≈ 116 days An improved SA for computationally expensive models: a case study of the Zurich network in VISSIM

6

If randomly sampling m trajectories, same results only need $\underline{m(k+1)}$ runs.



7

Solution:

Find an optimized set of trajectories (OT) that covers the total input space as much as possible.

8

- 1. Randomly generate *m* trajectories
- Enumerate all possible sets containing n trajectories from the original m random trajectories (n<<m)
- 3. Pick the set with the highest dispersion

Source: Campolongo et al., 2006

e.g. k = 14, n = 10, 30 min/run Total computation time for EE \approx 3 days

However: when m is large, the total number of combinations could be huge!

$$N = \frac{m!}{n! * (m-n)!}$$

e.g. m = 200, n = 10, $N \approx 2 \times 10^{16}$ Computation time for enumerating ≈ 50 days

Quasi-Optimized Trajectories SC Introduction Quasi-OTEE Method Case Study Conclusions

Step 1: Pick the optimized set (i.e., S_1) of m - 1 trajectories from

the original set (i.e., S_0 , containing *m* trajectories)

Step 2: Pick the optimized set (i.e., S_2) of m - 2 trajectories based on S_1

• • • • • •

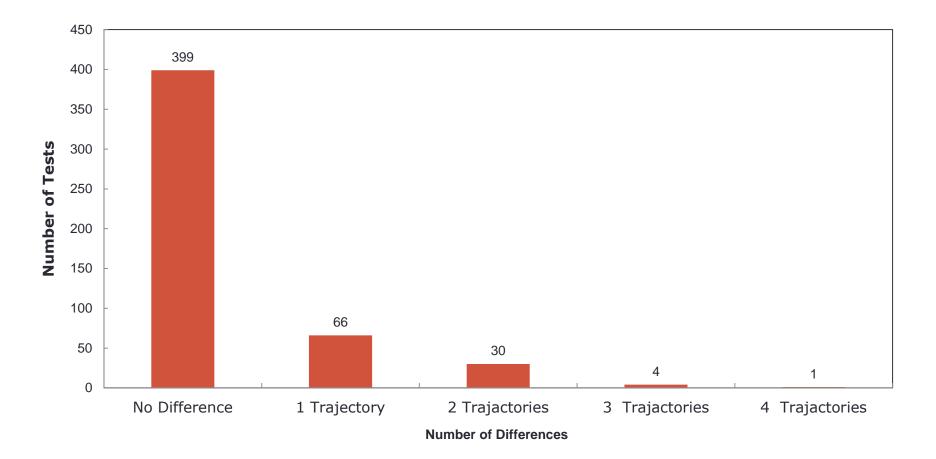
Step m-n: only *n* trajectories are left

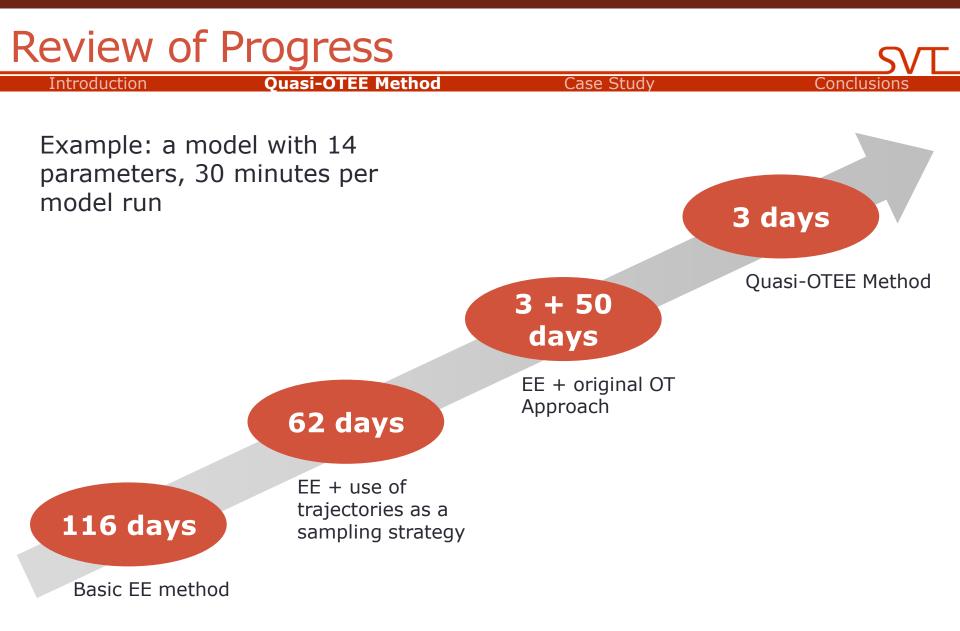
Total combinations = $m + (m - 1) + \dots + n = \frac{(m+n)(m-n+1)}{2} \ll \frac{m!}{n! * (m-n)!}$.

Note: the trajectories may not always be identical to the ones found by the original OT approach, so we call them the quasi-OT

e.g. *m*= 200, *n*=10, *N*=20,055 Computation time for enumerating \approx 15 min

OT Sampling V.S. Quasi-OT Sampling

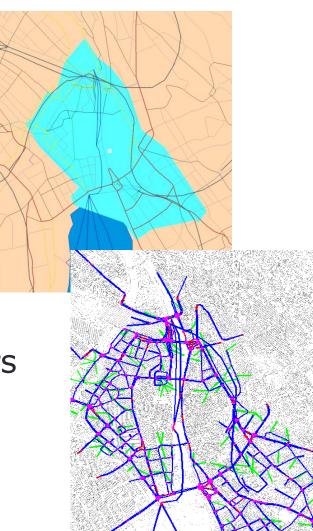

Introduction


Quasi-OTEE Method

Case Study

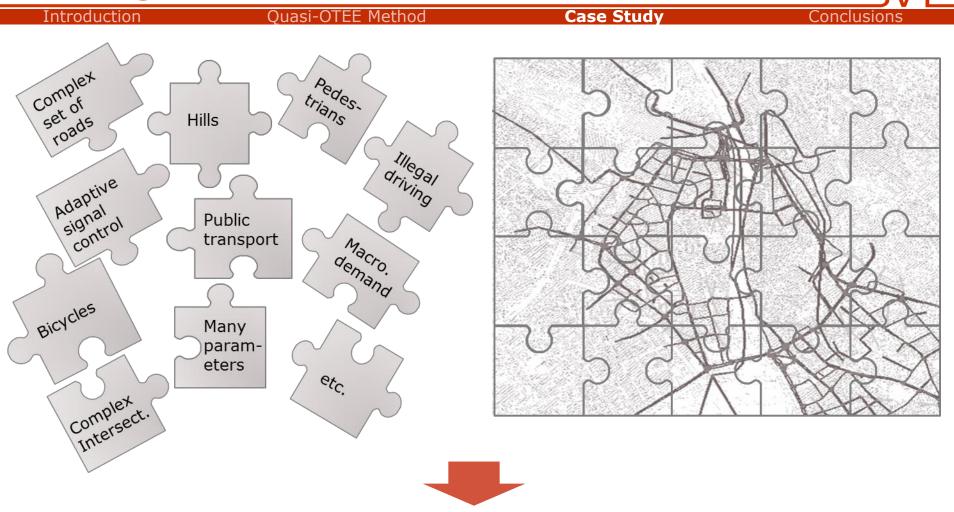
Conclusions

500 tests of selecting 10 OT / quasi-OT from 20 randomly generated trajectories


Case Background

Introduction

Juasi-OTEE Method


Case Study

- Study area in VISSIM: inner city of Zurich (around 2.6 km²)
- Simulation period: 5pm to 6pm
- Warm up period: 900 simulation seconds
- Aim of SA: to identify the parameters with the highest influence on travel time

Conclusion

Challenges of the SA

- 192 VISSIM parameters
- VISSIM model is complicated and behaves like a black box
- Computational cost is very high (> 30 min per simulation run)

Pre-selection of Parameters (1/2)

Introduction

Ouasi-OTEE Method

				S	
-	-	-	-	-	-

Idv

Conclusions

#		#	Parameter		Relevant. use the value Very Important, need calibration VISSUM output				t relevant										
97	-							Relevant, use the	aules										
98		77	#			· · · · · ·		Relevant, use the value											
99	Pas	78						Very Important, need		Relevant, use the value		elevant, use VI	ISSIM						
100		79	65																
101			65.1					Parameter	Very Important,			ed Relevant, use the value from Demand Model and		Relevant, use VISSIM	t relevant				
	-	80				· .									, i tene o anti-				
102	_	81	65.2	49									and a contract of a second						
103		82	65.3	50							_			Very Important, need Relevant, use the val					
104		83	65.4	51	3	6 Desire	d po		#		Para	imeter		calibration	from Demand Model an	d default value	Not relevant		
105		84	65.5	52		520	21.2									Deleverations also vehicles			
105	Start tin			53		37 C 21.3 38 21.4					#			Very Important, need		Relevant, use the valu		Not relevant	
106	Start un	85	66.1	54			21.4		11			-							
	DT Aslance			66.2 55	39	9 01	ertal 21.5		11.1	Category (Very Important, need	Relevant, use the value	Relevant, use VISSIN	м
107	PT telegrar	86	66.3			Minin	21.6		11.2		5	C	#	# Par	imeter ca	calibration	from Demand Model and VISSUM output	default value	Not releva
		87	66.4	56	6 4	0	21./		11.3		5.1								
100	-	88	66.5	57		1	at 21.8		11.4		5.2				E	ase Functions and Distr	ibutions		-
108		89		58		, De	21.9 cisio 21.10		11.5		5.3		1	Maximum	Acceleration			4	
109		90	67	59	4	1	Cor 22	No intera	11.6		6		1.1		range			1	
110	-	91	68	60	4:	.1	2.2	Nontera	11.7		6.1		1.2		acceleration			1	
111	-		69	61	4:	.2	1000	Lane change rul	11.8		6.2		1.3		acceleration			· · ·	
112	-	92	70		4:	.3	23	corre entenge rou		Vehicle Cla	6.3		1.4		Mean value of acceleration			· ·	-
113	_			62		2 Behav	ora 24	Maximu	12	Bike	7		1.4		ion curve				
		93	71	63			25	Maximum de			7.1		2					· ·	-
		94	72			3 Red		-1 m/s	13		7.2				um Acceleration			· ·	
		95	73	64		Reduc	27	-1 m/s2 per	14		7.3		2.1		range			×	A
		96	74	64.1	4	4 Reduc	20	Accepte	15	N	8	2D/3	2.2						4
	_		75	64.2		_ Redu	ed s	Accepted de	16		8.1	Sha	2.3		acceleration			1	4
			76	64.3		45 Reduced 3	30	Waiting	17		Ge	Geometr	2.4		facceleration			×	
				64.4			31	Min. h	18	Temp	8.2	front	2.5		ion curve			×	
				64.5		6	32	To slower lane	19	Tempo	8.3		3	Minimum	Deceleration			×	
					4	7	33	Safety dis	20	· · · · · · · · · · · · · · · · · · ·	9		3.1	Speed	range			✓	
					4	8	34	Maximum decele	20.1		9.1	Distrib	3.2	Max value o	deceleration			×	
							35	Overtak	20.2		9.2		3.3	Min value of	deceleration			√	
							-		20.3		9.3		3.4	Mean value o	f deceleration			✓	
									21		10		3.5	Distribut	ion curve			√	
									21.1		10.1	Location (4	Desired Maxim	um Acceleration			✓	
													4.1	Speed	range			~	
											10.2		4.2		deceleration			~	
										-			4.3		deceleration			1	
													4.4		f deceleration			1	
													4.5	Distribut				1	

Each parameter was analyzed individually, and categorized according to its relevance within the Zurich model

Pre-selection of Parameters (2/2)

Introduction

Ouasi-O Method

#

Case Study

Parameters

Average Standstill Distance (m)

Conclusions

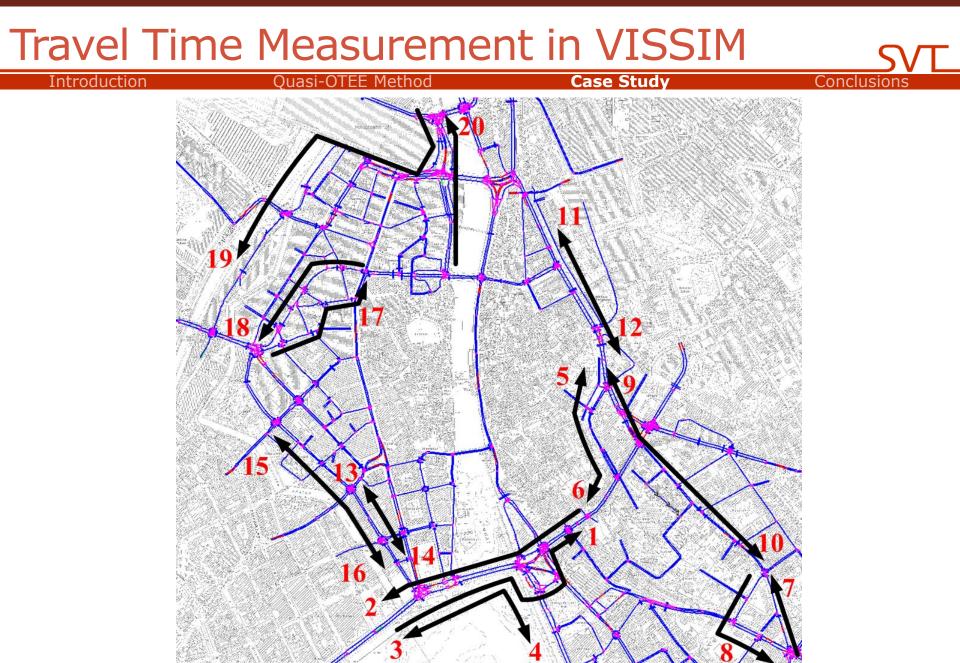
Proposed Range

[1, 3] [0, 4] [1, 5] [-6, -2]

VISSIM Default

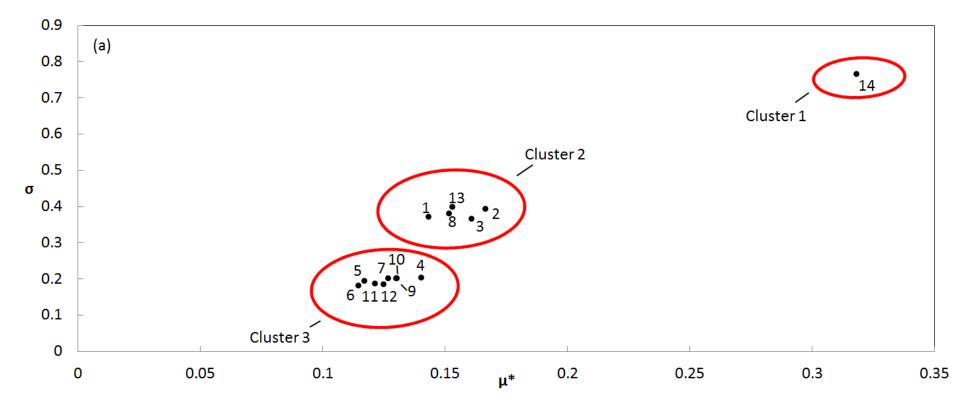
2

Parameters

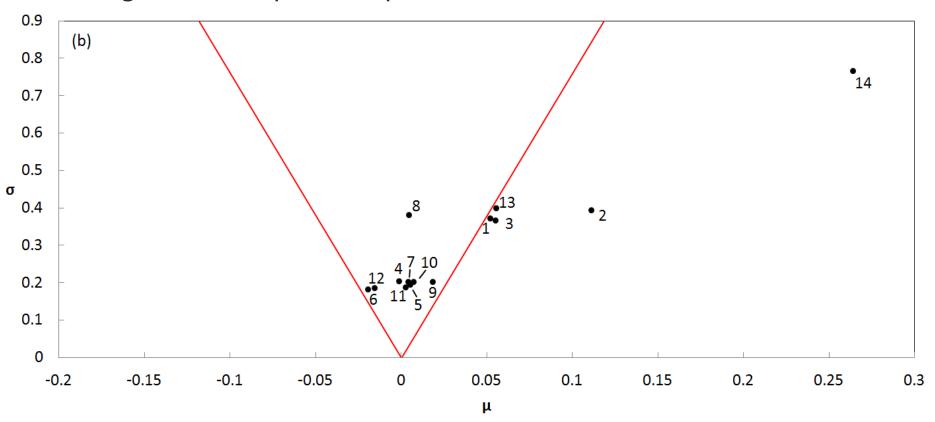

192 total VISSIM parameters

148 relevant

14 SA


?

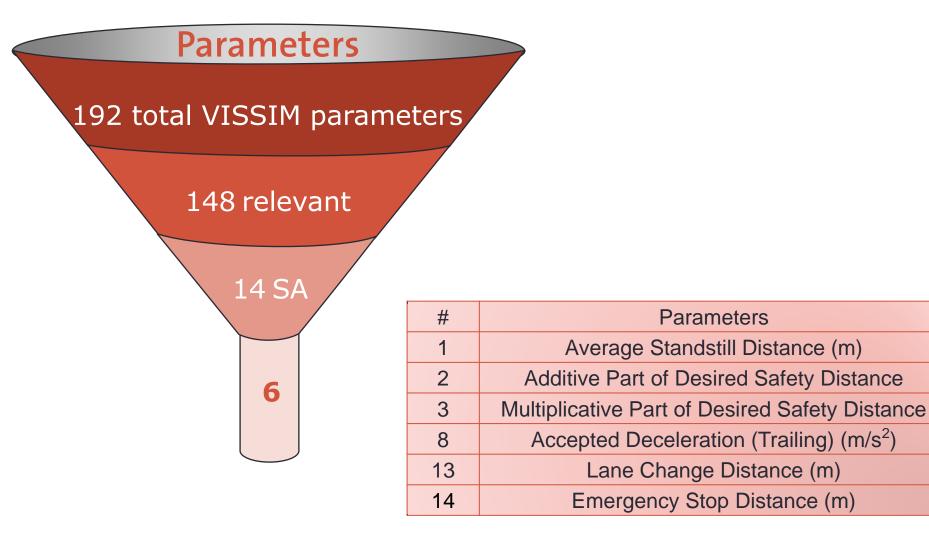
	1	Average Standstill Distance (III)	2	[1, 5]
	2	Additive Part of Desired Safety Distance	2	[0, 4]
	3	Multiplicative Part of Desired Safety Distance	3	[1, 5]
	4	Max Deceleration (Own) (m/s ²)	-4	[-6, -2]
	5	Accepted Deceleration (Own) (m/s ²)	-1	[-1.5, -0.5]
	6	-1 m/s ² per Distance (Own) (m)	100	[50, 150]
	7	Max Deceleration (Trailing) (m/s ²)	-3	[-5, -1]
	8	Accepted Deceleration (Trailing) (m/s ²)	-1	[-1.5, -0.5]
	9	-1 m/s ² per Distance (Trailing) (m)	100	[50, 150]
	10	Minimum Headway (m)	0.5	[0.3, 1]
	11	Safety Distance Reduction Factor	0.6	[0, 1]
	12	Max. Deceleration for Cooperative Braking (m/s ²)	-3	[-5, -1]
	13	Lane Change Distance (m)	200	[150, 250]
	14	Emergency Stop Distance (m)	5	[3, 7]



Plots of μ^* versus σ of the EE for the 14 parameters. The plots are separated into 3 clusters based on the K-Means Clustering.

Plots of μ versus σ of the EE for the 14 parameters. Lines in the figure correspond to $\mu = \pm 2SEM^*$

*SEM = Standard Error of the Mean = $\sigma/\sqrt{\text{sample size}}$


Parameters for Further Analysis

Introduction

Ouasi-OTEE Method

Case Study

Conclusions

Conclusions

Introduction

Quasi-OTEE Method

Case Study

Conclusions

- Quasi-OTEE is an improvement to the EE method with much higher efficiency. In the case study, the time cost was reduced from 116 days to 3 days.
- Quasi-OTEE is a practical and efficient screening tool for computationally expensive microscopic traffic models, as well as other complex models in the wider scientific community.

Potential extensions:

 Converting this approach into a quantitative SA approach based on the same design and sampling process.

Contact Information

Qiao Ge "Traffic Engineering" Group (SVT) Institute for Transport Planning and Systems ETH Zurich Phone: +41 44 633 32 49 E-Mail: qiao.ge@ivt.baug.ethz.ch

Thank you!