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Introduction 

• Sensitivity Analysis (SA) is useful to 
identify influential parameters in model 
calibration. 
 

• Problem: lack of formal procedures and few 
examples of SA in the calibration of 
microscopic traffic models, especially 
computationally expensive models. 
 

• Our aim: to develop an efficient approach 
as a preliminary screening tool. 
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Review of SA Methods 

• Derivative-based approach 

• Regression-based approach 

• Sampling-based approach 

• Variance-based approach 

• Metamodel-based approach 

• Monte Carlo Filtering approach 

• Screening approach: Elementary Effects Method 
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Definition of Elementary Effect 

A model Y has k parameters X=[X1, X2, …, 
Xk], the output is:  
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If Xi  is changed by Δ, then the EE is: 

1 1(X) ( ,..., , ,... )i i kY Y X X X X

Calculating the Sensitivity Index (SI) μ, μ* and σ of EE by sampling different X:  

1) Non-influential parameters: low μ*  

2) Linear and additive effects, no interaction: high μ* but low σ 

3) Non-linear effects and/or strong interactions: high μ*  and σ 

4) Oscillating effects: low μ but high μ* 
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Sampling Strategy (1/2) 

• Two model runs are required to calculate 
one EE for Xi: with initial inputs [X1, X2, …, 
Xi-1, Xi, Xi+1,…, Xk] and the varied inputs 
[X1, X2, …, Xi-1, Xi +Δ, Xi+1,…, Xk]. 

 

• A k-parameter model: if m EEs are 
required for each parameter, then 2mk 
model runs are required. 
 

e.g. k= 14, m=200, 30 min/run 

Total computation time ≈ 116 days 
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Sampling Strategy (2/2) 

EE(X1) = [Y(P1) - 
Y(P0)] / Δ 

k+1 

points 

k+1 points = one trajectory  

EE(X2) = [Y(P2) - 
Y(P1)] / Δ 

P0 P1 

P2 

A model with 2 parameters [X1 , X2]  

If randomly sampling m trajectories, same results 
only need m(k+1) runs.  

e.g. k= 14, m=200, 30 min/run 

Total computation time ≈ 62 days 



7 

Introduction Case Study Conclusions Quasi-OTEE Method 

An improved SA for computationally expensive models: a case study of the Zurich network in VISSIM 

Optimized Trajectories (1/2) 

Solution:  

Find an optimized set of trajectories (OT) that 
covers the total input space as much as possible. 
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Optimized Trajectories (2/2) 

1. Randomly generate m trajectories 

2. Enumerate all possible sets containing n 

trajectories from the original m random 

trajectories (n<<m) 

3. Pick the set with the highest dispersion 

 

Source: Campolongo et al., 2006 
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e.g. k = 14, n =10, 30 min/run 

Total computation time for EE ≈ 3 days 
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Problem of the Original OT Sampling 

 

However: 

when m is large, the total number of 
combinations could be huge! 

 

   N = 
𝑚!

𝑛!∗ 𝑚−𝑛 !
 

 

 

e.g. m = 200, n = 10, N ≈ 2 x 1016 

Computation time for enumerating ≈ 50 days 
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Quasi-Optimized Trajectories 

Step 1: Pick the optimized set (i.e., S1) of m – 1 trajectories from 

the original set (i.e., S0, containing m trajectories) 

Step 2: Pick the optimized set (i.e., S2) of m – 2 trajectories 

based on S1  

…… 

Step m-n: only n trajectories are left 

Total combinations = 𝑚 + 𝑚 − 1 + ⋯ + 𝑛 =
𝑚+𝑛 𝑚−𝑛+1

2
≪

𝑚!

𝑛!∗ 𝑚−𝑛 !
 .  

Note: the trajectories may not always be identical to the ones 
found by the original OT approach, so we call them the quasi-OT 

e.g. m= 200, n=10, N=20,055 

Computation time for enumerating ≈ 15 min 
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OT Sampling V.S. Quasi-OT Sampling  

500 tests of selecting 10 OT / quasi-OT from 20 
randomly generated trajectories 
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Review of Progress 

116 days 

62 days 

3 + 50 
days 

3 days 

Basic EE method 

EE + use of 
trajectories as a 
sampling strategy 

EE + original OT 
Approach 

Quasi-OTEE Method 

Example: a model with 14 
parameters, 30 minutes per 
model run  
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Case Background 

• Study area in VISSIM: inner city of 
Zurich (around 2.6 km2) 

 

• Simulation period: 5pm to 6pm 

 

• Warm up period: 900 simulation 
seconds 

 

• Aim of SA: to identify the parameters 
with the highest influence on travel 
time 



14 

Introduction Case Study Conclusions Quasi-OTEE Method 

An improved SA for computationally expensive models: a case study of the Zurich network in VISSIM 

Challenges of the SA 

• 192 VISSIM parameters 

• VISSIM model is complicated and behaves like a black box 

• Computational cost is very high (> 30 min per simulation run) 
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Pre-selection of Parameters (1/2) 

Each parameter was analyzed individually, and categorized  

according to its relevance within the Zurich model 
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Pre-selection of Parameters (2/2) 

192 total VISSIM parameters 

148 relevant 

14 SA 

Parameters 

? 
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Travel Time Measurement in VISSIM 
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SA Results (1/2) 

Plots of μ* versus σ of the EE for the 14 parameters. The plots 
are separated into 3 clusters based on the K-Means Clustering. 
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SA Results (2/2) 

*SEM = Standard Error of the Mean = 𝜎/ sample size   

Plots of μ versus σ of the EE for the 14 parameters. Lines in 
the figure correspond to μ = ±2SEM*  
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Parameters for Further Analysis  

192 total VISSIM parameters 

148 relevant 

14 SA 

Parameters 

6 

# Parameters 

1 Average Standstill Distance (m) 

2 Additive Part of Desired Safety Distance 

3 Multiplicative Part of Desired Safety Distance 

8 Accepted Deceleration (Trailing) (m/s2) 

13 Lane Change Distance (m) 

14 Emergency Stop Distance (m) 
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Conclusions 

• Quasi-OTEE is an improvement to the EE method with much 

higher efficiency. In the case study, the time cost was reduced 

from 116 days to 3 days. 

• Quasi-OTEE is a practical and efficient screening tool for 

computationally expensive microscopic traffic models, as well 

as other complex models in the wider scientific community. 

 

Potential extensions: 

• Converting this approach into a quantitative SA approach 

based on the same design and sampling process. 
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