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Introuction S\

Introduction Quasi-OTEE Method Case Stud Conclusions

- Sensitivity Analysis (SA) is useful to
identify influential parameters in model
calibration.

- Problem: lack of formal procedures and few
examples of SA in the calibration of
microscopic traffic models, especially
computationally expensive models.

- Our aim: to develop an efficient approach
as a preliminary screening tool.
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Review of SA Methods S\

Introduction Quasi-OTEE Method Case Stud Conclusions

- Derivative-based approach
- Regression-based approach
- Sampling-based approach

- Variance-based approach

- Metamodel-based approach

- Monte Carlo Filtering approach

- Screening approach: Elementary Effects Method
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Definition of Elementary Effect S\~

A model Y has k parameters X=[X;,, X,, ...,
X, ], the output is:

Y(X) =Y (Xyy o X gy XX, )

If X; is changed by A, then the EE is:

Y (X Xy X A, X ) =Y (Ko Xy Xy X,)
' A

withi €[1,2,3,...,k]
- =

Calculating the Sensitivity Index (SI) y, u* and o of EE by sampling different X:
1) Non-influential parameters: low u*

2) Linear and additive effects, no interaction: high u* but low o
3) Non-linear effects and/or strong interactions: high u* and o
4) Oscillating effects: low y but high y*
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Sampling Strategy (1/2) S\

- Two model runs are required to calculate
one EE for X;: with initial inputs [X;, X5,
Xi.1y Xiy Xiz1,-, X, ] @nd the varied inputs
[ X}, Xz, ey X,_l, X +A, Xiiq, Xil

III’

- A k-parameter model: if m EEs are

required for each parameter, then 2mk
model runs are required.

-

e.g. k=14, m=200, 30 min/run

Total computation time = 116 days
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Sampling Strategy (2/2) S\

A model with 2 parameters [X; , X,]

e
| X | X
— P2

EE(X;) = [Y(P,) - { k+1
Y(P)]/ A — . ——( D

’ points PO P1
EE(X;) = [Y(Py) - {
Y(P)1/ B B

k+1 points = one trajectory X

If randomly sampling m trajectories, same results
only need m(k+1) runs.

-

e.g. k=14, m=200, 30 min/run

Total computation time = 62 days
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Optimized TraJectorles (1/2) SV

Solution:
Find an optimized set of trajectories (OT) that

covers the total input space as much as possible.
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Optimized Trajectories (2/2) S\

Introduction Duasi-OTEE Method

1. Randomly generate m trajectories

2. Enumerate all possible sets containing n
trajectories from the original m random

trajectories (n<<m)

3. Pick the set with the highest dispersion

Source: Campolongo et al., 2006

-

e.g. k =14, n =10, 30 min/run

Total computation time for EE = 3 days
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Problem of the Original OT Sampling

Introduction Duasi-OTEE Method Case Stud Conclusions

However:

when m is large, the total number of
combinations could be huge!

N = m!

nls(m—n)!

-

e.g.m=200,n=10,N = 2 x 10%6

Computation time for enumerating = 50 days



An improved SA for computationally expensive models: a case study of the Zurich network in VISSIM 10

Quasi-Optimized Trajectories S\

Introduction Duasi-OTEE Method Case Stud Conclusions

Step 1: Pick the optimized set (i.e., S;) of m - 1 trajectories from

the original set (i.e., S,, containing m trajectories)

Step 2: Pick the optimized set (i.e., S,) of m - 2 trajectories
based on S,

Step m-n: only n trajectories are left

__ (m+n)(m-n+1) m!

Total combinations=m+(m—-1)+:--+n =

2 nlx(m-n)!
Note: the trajectories may not always be identical to the ones
found by the original OT approach, so we call them the quasi-OT

-

e.g. m= 200, n=10, N=20,055

Computation time for enumerating = 15 min
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OT Sampling V.S. Quasi-OT Sampling S\

Introduction Duasi-OTEE Method Case Stud Conclusions

500 tests of selecting 10 OT / quasi-OT from 20
randomly generated trajectories

450

399

400 -

350 *

300 *

250 r

200 *

Number of Tests

150 +

100 +

50 |

4 1

0
No Difference 1 Trajectory 2 Trajactories 3 Trajactories 4 Trajactories

Number of Differences
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Review of Progress -

Introduction Duasi-OTEE Method Conclusions

Example: a model with 14
parameters, 30 minutes per
model run

Quasi-OTEE Method

EE + original OT
Approach

EE + use of
trajectories as a
sampling strategy

Basic EE method
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Case Background SVT

Introduction Quasi-OTEE Method Case Stud Conclusions
- Study area in VISSIM: inner city of . ., \
Zurich (around 2.6 km?2) Sy WA

- Simulation period: 5pm to 6pm

- Warm up period: 900 simulation
seconds

- Aim of SA: to identify the parameters
with the highest influence on travel
time
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Challenges of the SA -

Introduction Quasi-OTEE Method Conclusions

Hills D | :)Q
E;bn‘:scport GE Q

192 VISSIM parameters
VISSIM model is complicated and behaves like a black box
Computational cost is very high (> 30 min per simulation run)
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Pre-selection of Parameters (1/2)
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according to its relevance within the Zurich model
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Pre-selection of Parameters (2/2) SVT

Introduction Quasi-OTEE Method Case Stud Conclusions

Parameters

192 total VISSIM parameters

‘ # Parameters VISSIM Default = Proposed Range
1 48 reIeV a nt ‘ 1 B ./fxverage Stands.tilliDisEnEa (.m) 2 [1,73]
2 | Additive Part of Desired Safety Distance 2 [0, 4]
3 Multiplicative Part of Desired Safety Distance 3 [1,5]
4 Max Deceleration (Own) (m/s?) -4 [-6, -2]
5 B Accepted Deceleration (Own) (m/s?) -1 [-1.5, -0.5]
6 -1 m/s? per Distance (Own) (m) 100 [50, 150]
7 Max Deceleration (Trailing) (m/s?) e [-5, -1]
I 8 Accepted Deceleration (Trailing) (m/s?) 1 [-1.5,-0.5]
9 -1 m/s? per Distance (Trailing) (m) 100 [50, 150]
? 10 Minimum Headway (m) 0.5 [0.3, 1]
%1 T : Sgt; DEtance Reduction Factor 0.6 [0, 1]
7127{7Ma)7<. Deceilerétim for Cooperative Braking (m/s?) -3 [-5, -1]
~ 15 [ Lane Change Distance (m) 200 [150, 250]
14 Emergency Stop Distance (m) 5 [B%Z]
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Travel Time Measurement in VISSIM S\

Introduction Conclusions
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SA Results (1/2) -

Introduction Quasi-OTEE Method Conclusions

Plots of u* versus o of the EE for the 14 parameters. The plots
are separated into 3 clusters based on the K-Means Clustering.
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SA Results (2/2) VT

Introduction Quasi-OTEE Method Case Stud Conclusions

Plots of y versus o of the EE for the 14 parameters. Lines in
the figure correspond to y = £2SEM*
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*SEM = Standard Error of the Mean = ¢ /,/sample size
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Parameters for Further Analysis SVT

Introduction Quasi-OTEE Method Case Stud Conclusions

Parameters

192 total VISSIM parameters

148 relevant

# Parameters
1 Average Standstill Distance (m)
6 2 Additive Part of Desired Safety Distance
3 Multiplicative Part of Desired Safety Distance
L 8 Accepted Deceleration (Trailing) (m/s?)
13 Lane Change Distance (m)
14 Emergency Stop Distance (m)
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Conclusions S\,

Introduction Quasi-OTEE Method Case Stud Conclusions

- Quasi-OTEE is an improvement to the EE method with much
higher efficiency. In the case study, the time cost was reduced

from 116 days to 3 days.

- Quasi-OTEE is a practical and efficient screening tool for
computationally expensive microscopic traffic models, as well

as other complex models in the wider scientific community.

Potential extensions:

- Converting this approach into a quantitative SA approach

based on the same design and sampling process.
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