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Stanley Milgram
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Stanley Milgram
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http://en.wikipedia.org/wiki/Stanley_Milgram



Stanley Milgram’s experiment

Milgram, S. (1974) The frozen world of the familiar stranger. Psychology Today 17, 70-80.
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Stanley Milgram’s experiment
• “Familiar strangers” are those who urbanites meet everyday in public 

settings, such as a subway station, and with whom they never speak or 
otherwise acknowledge the other’s existence.

• Comfortable anonymity

• Physical proximity
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Physical proximity (Except taking photos)

Cattuto C, et al. (2010) Dynamics of person-to-
person interactions from distributed RFID sensor 

networks. PloS One 5(7):e11596.

Isella L, et al. (2011) What's in a crowd? Analysis of face-to-
face behavioral networks. J Theor Biol 271(1):166-180.

Stehlé J, et al. (2011) High-resolution measurements 
of face-to-face contact patterns in a primary school. 

PloS one 6(8):e23176.
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Physical proximity

Cattuto C, et al. (2010) Dynamics of person-to-
person interactions from distributed RFID sensor 

networks. PloS One 5(7):e11596.

Stehlé J, et al. (2011) High-resolution measurements 
of face-to-face contact patterns in a primary school. 

PloS one 6(8):e23176.

Limited in scale:
schools, conferences, 

exhibitions...
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Isella L, et al. (2011) What's in a crowd? Analysis of face-to-
face behavioral networks. J Theor Biol 271(1):166-180.
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How to tie them together?
• Think of data to capture physical proximity

• Active data collection?

Sun Lijun, FCL-SEC Familiar Strangers June, 7, 2013

Physical proximity ----- Familiar strangers



How to tie them together?
• Think of data to capture physical proximity

• Active data collection?

• Large scale (city)

• Accurate

• Long time observation
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How to tie them together?
• Think of data to capture physical proximity

• Active data collection?

• Large scale (city)

• Accurate

• Long time observation

• Public transit smart card!

• The EZ-link data in Singapore.
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Card ID,
Passenger Type,
Travel Mode,

Bus
Service Number,
Ride Start Time (Date),
Bus Registration No.
Direction

Boarding Stop ID

Alighting Stop ID,
Ride Duration,
Ride Distance,
Fare Paid,

Metro
Transfer Number,
Boarding Station ID,
Ride Start Time (Date),
…

How to tie them together?
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What do we get from smart card data?
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What do we get from smart card data?
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But this is not what we want

We want something complex

Like a network
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What do we get from smart card data?
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How do we convince you and ourselves?
• Why bus is a good proxy to capture physical proximity?

Sun Lijun, FCL-SEC Familiar Strangers June, 7, 2013

http://sgwiki.com/wiki/Buses



Find “familiar strangers”
• Find “the others” you have encountered more than once.

• “Once” over the study period: 
– perfect stranger

• “More than once”: 
– we assume he/she is a familiar stranger to you

A
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Find “familiar strangers”
• Find “the others” you have encountered more than once.

• “Once” over the study period: 
– perfect stranger

• “More than once”: 
– we assume he/she is a familiar stranger to you

• FSs are FSs
• What’s the law behind?

A
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Time-of-day and day-to-day variation
• Probability density 
• 2d plot shows the density of the current and the next encounter
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• Probability density
• 2d plot shows the density of the current and the next encounter
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• Have to check

• Two dimensions:
– Over day (merge      and     )
– Collective regularity morning/afternoon
– On the diagonal (                            )
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• Have to check

• Two dimensions:
– Over day (merge      and     )
– Collective regularity morning/afternoon
– On the diagonal (                            )

• Taken together, we find 
• reproducible temporal patterns
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What is the consequence?
• Distributions of …
• Duration of each encounter 
• Exponentially decaying tail

• Duration of 
• Sum of total duration between  
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What is the consequence?
• Distributions of …
• Duration of each encounter 
• Exponentially decaying tail

• Duration of 
• Sum of total duration between  
• Power-law tail
• Evidence of paired regularity

• Measurement?
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What is the consequence?
• On individual level

• Number of familiar strangers: 

• Personal weight: ( )( )( ) , 1
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What is the consequence?
• On individual level

• Personal weight:

• Follows a power law with high cut-offs,
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What is the consequence?
• On individual level

• Personal weight:

• Follows a power law with high cut-offs,

• Great variation
• Encounter patterns might be influence by 

individual behavior patterns (regularity).
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Measure individual regularity
• Rescaled personal weight:
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Measure individual regularity
• Rescaled personal weight:

• Absolute trip difference:
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Measure individual regularity
• Rescaled personal weight:

• Absolute trip difference:
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Measure individual regularity
• Individuals with higher  tend to have less 

skewed 

• Those with lower       display a more skewed 
distribution
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Measure individual regularity
• Individuals with higher  tend to have less 

skewed 

• Those with lower       display a more skewed 
distribution

• A larger encounter likelihood of an 
individual is strongly rooted in his/her 
behavioural regularity
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A world of familiar strangers

Sun Lijun, FCL-SEC Familiar Strangers

• We all living in a world of familiar strangers
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A world of familiar strangers

Monday

Sun Lijun, FCL-SEC Familiar Strangers June, 7, 2013



A world of familiar strangers

Tuesday
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A world of familiar strangers

Wednesday
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A world of familiar strangers

Thursday
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A world of familiar strangers

Friday
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A world of familiar strangers

Mon-Fri
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A world of familiar strangers
• A large social network over the population
• Diameter: 6
• Characteristic path length: 2.95 

– (random: 2.63)

• Average clustering coefficient: 0.19 
– (random: 4.5x10-4)

• Small-world
– Watts DJ & Strogatz SH (1998) Collective dynamics of ‘small-

world’networks. Nature 393:440-442.
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A world of familiar strangers
• After all the stupid analysis
• Linking you with familiar strangers:
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A world of familiar strangers

• Linking you with familiar strangers:
• Stage 1: when geography allows people to be available to one another

Grannis, R. (2009). From the ground up: Translating geography into community through neighbor networks. Princeton University Press.
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A world of familiar strangers

• Linking you with familiar strangers:
• Stage 1: when geography allows people to be available to one another
• Stage 2: when people unintentionally encounter one another or engage in 

passive interactions

Grannis, R. (2009). From the ground up: Translating geography into community through neighbor networks. Princeton University Press.
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A world of familiar strangers

• Linking you with familiar strangers:
• Stage 1: when geography allows people to be available to one another
• Stage 2: when people unintentionally encounter one another or engage in 

passive interactions
• Stage 3: when people intentionally encounter and interact with one 

another

Grannis, R. (2009). From the ground up: Translating geography into community through neighbor networks. Princeton University Press.
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A world of familiar strangers

• Linking you with familiar strangers: 
• Stage 1: when geography allows people to be available to one another
• Stage 2: when people unintentionally encounter one another or engage in 

passive interactions
• Stage 3: when people intentionally encounter and interact with one 

another
• Stage 4: when people engage in activities indicating mutual trust or a 

realization of shared norms and values

Grannis, R. (2009). From the ground up: Translating geography into community through neighbor networks. Princeton University Press.
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A world of familiar strangers
• What will happen afterwards?
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A world of familiar strangers
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• What will happen afterwards?
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Thank you!

Sun Lijun
Future Cities Laboratory, Singapore-ETH Centre

Dept. of Civil Eng., National University of Singapore
lijun.sun@ivt.baug.ethz.ch

https://sites.google.com/site/sunlijun1988/
June, 7, 2012, Copenhagen, NetSci2013
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• Why bus is a good proxy to capture physical proximity
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Appendix
• :  inter-encounter interval 
• the time interval between successive encounters

• Prominent peaks at 24h, 48h, 72h, 96h
• 1d, 2d, 3d, 4d

• Decreasing pattern
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Appendix
• As a result of various preference and constraints on individual behavior, 

spatial-temporal patterns and collective regularity can be found in daily 
life, such as morning/evening peak in transportation, crowdedness in 
shopping malls and supermarkets at weekends and in restaurants at 
dinning time.

• Transit use is only one of these social activities with limited time allocation 
and specific locations.

• The physical proximity does not necessarily indicate a more intense social 
contact such as talking to each other, but implies diverse interactions, from 
not noticing each other, to fleeting eye contact and a close observation.

• How to measure the familiarity in the passive “FS” network and how to 
define the threshold of familiarity on social diffusion processes. (beyond 
this study and maybe future work)
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