MATSim User Meeting

MATSim around the World

F.Ciari

March 27th, 2015 Future Cities Laboratory - Singapore ETH Centre (SEC)

Technische Universität Berlin

MATSim Monthly report

MATSim book scenarios

- Gregor Lämmel Julich, Germany
- Gavin McArdle Maynooth University, Co. Kildare, Ireland
- Miguel Picornell Nommon, Barcelona, Spain
- Sarra Belgacem Polytechnique de Montréal, Canada

GRIPS extension

March 27, 2015 | Gregor Lämmel | g.laemmel@fz-juelich.de

- GRIPS stands for "GIS base risk information and planning system for the evacuation of areas".
- GRIPS offers an integrated solution for rapid evacuation planning (vehicular XOR pedestrian).
- No detailed population model is needed. For a rapid appraisal a rough approximation is sufficient.
- The only external input is an openstreetmap xml-file of the evacuation area.
- Besides the openstreetmap xml-file, all input data can be entered via an interactive GUI.
- Released as an open source MATSim extension
 - (see https://matsim.atlassian.net/wiki/display/MATPUB/GRIPS)
- Supports Geoserver (<u>www.geoserver.org</u>) as background image provider

Population is equally distributed over user defined circles.

Road blockage editor

Optionally, time-dependent road blockages can be defined.

Analysis of the evacuation process

MATSim: Barcelona Case Study

Miguel Picornell, Maxime Lenormand

MATSim user meeting

Singapur 2015

- Project objective:
 - Analyse the impact of different public bike-sharing schemes in the city of Barcelona. The current system (Bicing) provides 6000 bicycles and 420 docks distributed all over the city.

- Data sources Network:
 - Road network adapted from Barcelona TRANSCAD network
 - Public transport network extracted from the public information available from the Transport Authority Website. Modes of transport considered:
 - Private vehicle, bus, underground, train, tram public bikes and walking

TRANSCAD road network

- Data sources Travel Demand:
 - Agents plans extracted from the analysis of mobile phone data (CDRs)
 - Sample of 55 days from September to November 2009 for Spain
 - Agent plans validated through the comparison with the annual Barcelona transport survey

Mobile phone antennas coverage for the Metropolitan Area of Barcelona

• Model calibration – Work in progress:

- Traffic counts for private vehicles
- Transport surveys for modal split
- Smart card for bike-sharing trips

Transport mode	Percentage from survey	MATSim results	
Walking	44.2 %	37.8 %	
Bicycle	1.0 %	6.19 %	
Soft modes	45.2 %	44%	
Bus	8.8 %	-	
Metro	7.5 %	-	
Train	4.9 %	-	
Other public	1.0 %	-	
Public transport	22.2 %	19.89 %	
Car	24.4 %	36,10 %	
Car-pooling	4.4 %	-	
Motorbike	3.4 %	-	
Other private	0.5 %		
Private transport	32.6 %	36.10%	

Preliminary calibration results

• Simulation scenarios – Work in progress:

- Add new docks
- Modify capacity of the current docks
- Change current docks location
- New payment schemes (stimulate uphill trips)
- Introduce electric bikes

MatSim in Action: The Dublin Scenario Gavin McArdle¹, Eoghan Furey², Aonghus Lawlor³, Alexei Pozdnoukhov⁴

¹National Centre for Geocomputation, Maynooth University, Co. Kildare, Ireland
 ²Letterkenny Institute of Technology, Co. Donegal, Ireland
 ³Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
 ⁴Smart Cities Research Centre, University of California, Berkeley, California, USA

Email: gavin.mcardle@nuim.ie

Input Sources - Initial Demand

Traditional Sources

- Population Census
 - Home Location (Administrative Area)
 - Work Location (250m Grid)
 - Translated administrative area and 250m grid data to an individual home or work place using GeoDirectory
 - Place of Work, School, College Census of Anonymised Records (POWSCAR)
 - Morning departure time
 - Mode of Transport
- Road Network- Open Street Map
 - Links and nodes, Speed Limits, Lanes, Class of Road

Input Sources - Secondary Trips

Irish National Travel Survey

- 16000 people kept a travel diary
 - School/Education
 - Shopping/Sport/Leisure
 - Doctor/Medical/Personal business
 - Visiting Family/Friends/Social/Entertainment
- No location information
 - Facility Locations
 - Shopping
 - Entertainment
 - Sport
 - Facility Capacities
 - Attractiveness Score
 - Size of Facility
 - No. Parking Spaces

Spatial Choice Models

- Radiation Model for Individual Spatial Choice
 - Based on model of intervening opportunities
 - Individuals have a demand for activities which can be fulfilled at multiple locations/facilities
 - Produce a ranking of facilities based on distance and attractiveness/capacity scores
 - The parameters are tuned based on demand patterns identified in on Twitter and Foursquare check-ins (optimal travel distance, etc.).

Output & Validation

- Hourly traffic volumes and travel times for all road segments in the road network (Open Street Map)
- Validate against ground truth from the National Roads Authority count stations on motorways
 - M50/M4 Count Stations Midweek
- Compare *Radiation Model* for location choice with a *Nearest Neighbour* approach

Results

Use of MATSim for carsharing analysis in Montreal

Sarra Ben Belgacem, Ph.D. student¹ Dr. Martin Trépanier, supervisor¹ Dr. Francesco Ciari, cosupervisor² 1 – Polytechnique Montréal 2 – ETH Zurich

Objectives

- The first objective is to integrate carsharing data from Communauto (Montréal) into MATSim to compare the three types of carsharing services
- Communauto is a research partner
 - About 900 cars in station-based carsharing
 - About 120 cars in free-floating carsharing
- The long term goal is to develop a decisionsupport tool for carsharing planning

1. First steps with MATSim

2. Road network conversion

3. Carsharing stations location

4. Some results (based on gross assumptions, testing only)

Score

Free-floating carsharing
gives the maximum score in MATSim simulation

Access /egress » time

Free-floating has a shorter access-egress time

Travael distance

Shortest travel distance is for one-way service

Next steps

- Adapt MATSim to the Montreal case
- Integrate data from other modes into MATSim (from large household surveys available in Montreal)
- Develop a trip generation model for carsharing based on Montreal data
- Provide a DSS tool to Communauto for network design and service planning

Please your contribution to the MATSim Report!

Thank you!

Thank you!

MATSim User Meeting: March 27, 2015

MATSim Application in Seoul

Atizaz Ali (M.Sc. Transportation Engineering) Junior Research Fellow | Singapore-ETH Center E: ali@arch.ethz.ch | T: +65-8207-1602 The **MATSim model of Seoul Metropolitan** was developed in 2012. The brief statistics related to the demand (input) are summarized as follows:

Study Area: Seoul Metropolitan Area (SMA)

Population and Demand Generation: Total population of SMA is 21.5 million therefore, 10% sample was generated and simulated (2.15 million agents)

Network: 16,384 nodes and 32768 links

Transit Schedule & Vehicles: Total number of routes is 1317 (contains regional buses, inter-city buses, feeder line buses and metro lines etc.)

Facility Files: Door to door demand generation (July 2014). Data source is Korean GIS department.

Thesis Topic: Activity-based Modelling Using Smart Card Data

(http://dcollection.uos.ac.kr/jsp/common/DcLoOrgPer.jsp?sltemId=00000002 3010)

Hierarchical Process of Generating Trip Purpose Assignment

For assigning activity purpose, following assumptions are made:

- The origin of the first trip is also the destination of last trip of the day (activity type is "home")
- The destination of the trip is also the origin of the succeeding trip (search radius of 500 meters)
- Transit users do not switch to other transport modes within their given sequence of daily transit trips

Data Trimming

Percent of Total Transactions

No. of Transactions per Card

Data Trimming

Activity locations (trips for the time being) and distance between the consecutive boarding & alighting play an important role in analyzing useful data Trip Start & End Locations

Distance between activity start and end location in meters (transit stop)

Segregating trips out of trip segments

Analyzing Transfer Points:

- -For each Boarding Bi, if Bi Ai-1 > 30, it is an Origin of a new trip, otherwise a transfer point
- -For each Alighting Ai, if Bi+1 Ai > 30, it is the Destination of that trip
- -For each ID's first and last segment, boarding of first segment is always origin and alighting of last segment is destination

Trip Segments			Individual Trips			
Card ID	Boarding Time	Alight Time	Description	Card ID	Boarding Time	Alight Time
18558722	08:11:12	08:29:10	$O_1 = B_1$	18558722	08:11:12	08:55:09
18558722	08:33:52	08:55:09	$D_1 = A_2$	18558722	17:20:11	17:32:33
18558722	17:20:11	17:32:33	$O_2 = B_3$ $D_2 = A_3$	18558722	18:10:10	18:42:41
18558722	18:10:10	18:16:50	O3 = B4			
18558722	18:20:24	18:30:22				
18558722	18:31:30	18:42:41	D3 = A6			

- Conducted by Korean Transport Database in 2010
- 217,444 households surveyed
- 540,298 persons
- Average trip per person is 2.46 (Overall)
- Number of trips per person **2.07 (Transit users only)**
- Variables studied are: HH ID, Person ID, Trip Purpose, Trip Mode, Activity Start Time, Activity Duration and Activity Sequence
- Activities reported in the survey are: "home", "work", "school", "academy", "workbased trip", "shopping", "leisure" and "other"

ΑCTIVITY TYPE	PERCENTAGE
Home	45.7 % (trips)
Work	19.5 %
School	11.9 %
Academy	5.3 %
Shopping	2.3 %
Leisure	3.7 %
Work-based Trips	4 %

% over total activities

Time (hours)

42

Activity Duration: Work

Activity Duration: School

Activity Duration: Academy

Trip Purpose Assignment

Commuting Time for two Datasets - Validation

Results

Results

The final **smart** database contains the following attributes and is ready for **MATSim input demand generation**

- Card ID (user)
- Activity type
- Activity duration
- Activity start time
- Activity end time
- The consecutive trip boarding & alighting

Once these attributes are available, they can be joined in database i.e. the **complete day itineraries** for all the agents!

Application in MATSim

Thank You!